Build WasmEdge With WasmEdge-Tensorflow Plug-in
Prerequisites
The prerequisites of the WasmEdge-Tensorflow plug-in is the same as the WasmEdge building environment on the Linux platforms or MacOS platforms.
Build WasmEdge with WasmEdge-Tensorflow Plug-in
To enable the WasmEdge WasmEdge-Tensorflow, developers need to building the WasmEdge from source with the cmake option -DWASMEDGE_PLUGIN_TENSORFLOW=On
.
cd <path/to/your/wasmedge/source/folder>
cmake -GNinja -Bbuild -DCMAKE_BUILD_TYPE=Release -DWASMEDGE_PLUGIN_TENSORFLOW=On
cmake --build build
# For the WasmEdge-Tensorflow plug-in, you should install this project.
cmake --install build
If the built wasmedge
CLI tool cannot find the WasmEdge-Tensorflow plug-in, you can set the WASMEDGE_PLUGIN_PATH
environment variable to the plug-in installation path (such as /usr/local/lib/wasmedge/
, or the built plug-in path build/plugins/wasmedge_tensorflow/
) to try to fix this issue.
Then you will have an executable wasmedge
runtime under /usr/local/bin
and the WasmEdge-Tensorflow plug-in under /usr/local/lib/wasmedge/libwasmedgePluginWasmEdgeTensorflow.so
after installation.
Install the TensorFlow Dependency
Installing the necessary libtensorflow_cc.so
and libtensorflow_framework.so
on both Linux
and MacOS
platforms, we recommend the following commands:
curl -s -L -O --remote-name-all https://github.com/second-state/WasmEdge-tensorflow-deps/releases/download/TF-2.12.0-CC/WasmEdge-tensorflow-deps-TF-TF-2.12.0-CC-manylinux2014_x86_64.tar.gz
# For the Linux aarch64 platforms, please use the `WasmEdge-tensorflow-deps-TF-TF-2.12.0-CC-manylinux2014_aarch64.tar.gz`.
# For the MacOS x86_64 platforms, please use the `WasmEdge-tensorflow-deps-TF-TF-2.12.0-CC-darwin_x86_64.tar.gz`.
# For the MacOS arm64 platforms, please use the `WasmEdge-tensorflow-deps-TF-TF-2.12.0-CC-darwin_arm64.tar.gz`.
tar -zxf WasmEdge-tensorflow-deps-TF-TF-2.12.0-CC-manylinux2014_x86_64.tar.gz
rm -f WasmEdge-tensorflow-deps-TF-TF-2.12.0-CC-manylinux2014_x86_64.tar.gz
The shared library will be extracted in the current directory ./libtensorflow_cc.so.2.12.0
and ./libtensorflow_framework.so.2.12.0
on Linux
platforms, or ./libtensorflow_cc.2.12.0.dylib
and ./libtensorflow_framework.2.12.0.dylib
on MacOS
platforms.
After building the plug-in, you can also find these shared libraries under the build/_deps/wasmedge_tensorflow_lib_tf-src/
directory.
Then you can move the library to the installation path and create the symbolic link:
mv libtensorflow_cc.so.2.12.0 /usr/local/lib
mv libtensorflow_framework.so.2.12.0 /usr/local/lib
ln -s libtensorflow_cc.so.2.12.0 /usr/local/lib/libtensorflow_cc.so.2
ln -s libtensorflow_cc.so.2 /usr/local/lib/libtensorflow_cc.so
ln -s libtensorflow_framework.so.2.12.0 /usr/local/lib/libtensorflow_framework.so.2
ln -s libtensorflow_framework.so.2 /usr/local/lib/libtensorflow_framework.so
If on MacOS
platforms:
mv libtensorflow_cc.2.12.0.dylib /usr/local/lib
mv libtensorflow_framework.2.12.0.dylib /usr/local/lib
ln -s libtensorflow_cc.2.12.0.dylib /usr/local/lib/libtensorflow_cc.2.dylib
ln -s libtensorflow_cc.2.dylib /usr/local/lib/libtensorflow_cc.dylib
ln -s libtensorflow_framework.2.12.0.dylib /usr/local/lib/libtensorflow_framework.2.dylib
ln -s libtensorflow_framework.2.dylib /usr/local/lib/libtensorflow_framework.dylib
Or create the symbolic link in the current directory and set the environment variable export LD_LIBRARY_PATH=$(pwd):${LD_LIBRARY_PATH}
.