Skip to main content

OpenVINO Backend

We will use this example project to show how to make AI inference with an OpenVINO model in WasmEdge and Rust.

Prerequisite

Besides the regular WasmEdge and Rust requirements, please make sure that you have the Wasi-NN plugin with TensorFlow Lite installed.

Quick Start

Because the example already includes a compiled WASM file from the Rust code, we could use WasmEdge CLI to execute the example directly.

First, git clone the WasmEdge-WASINN-examples.

git clone https://github.com/second-state/WasmEdge-WASINN-examples.git
cd WasmEdge-WASINN-examples
# download the fixture files (OpenVINO model files)
./download_mobilenet.sh
wasmedge --dir .:. wasmedge-wasinn-example-mobilenet-image.wasm mobilenet.xml mobilenet.bin input.jpg

If everything goes well, you should have the terminal output:

Read graph XML, size in bytes: 143525
Read graph weights, size in bytes: 13956476
Loaded graph into wasi-nn with ID: 0
Created wasi-nn execution context with ID: 0
Read input tensor, size in bytes: 602112
Executed graph inference
1.) [954](0.9789)banana
2.) [940](0.0074)spaghetti squash
3.) [951](0.0014)lemon
4.) [969](0.0005)eggnog
5.) [942](0.0005)butternut squash

Build and Run the example from Rust source code

Let's build the wasm file from the rust source code.

First, git clone the WasmEdge-WASINN-examples.

git clone https://github.com/second-state/WasmEdge-WASINN-examples.git
cd openvino-mobilenet-image/rust/

Second, use cargo to build the template project.

cargo build --target wasm32-wasi --release

The output WASM file is target/wasm32-wasi/release/wasmedge-wasinn-example-mobilenet-image.wasm.

Next, download the OpenVINO model files and use WasmEdge to classify your images.

./download_mobilenet.sh
wasmedge --dir .:. wasmedge-wasinn-example-mobilenet-image.wasm mobilenet.xml mobilenet.bin input.jpg

You can replace input.jpg with your image file.

Improve performance

For the AOT mode, which is much more quickly, you can compile the WASM first:

wasmedgec wasmedge-wasinn-example-mobilenet.wasm out.wasm
wasmedge --dir .:. out.wasm mobilenet.xml mobilenet.bin input.jpg

Understand the code

The main.rs is the full example Rust source.

First, read the model description and weights into memory:

let args: Vec<String> = env::args().collect();
let model_xml_name: &str = &args[1]; // File name for the model xml
let model_bin_name: &str = &args[2]; // File name for the weights
let image_name: &str = &args[3]; // File name for the input image

let xml = fs::read_to_string(model_xml_name).unwrap();
let weights = fs::read(model_bin_name).unwrap();

We should use a helper function to convert the input image into the tensor data (the tensor type is F32):

fn image_to_tensor(path: String, height: u32, width: u32) -> Vec<u8> {
let pixels = Reader::open(path).unwrap().decode().unwrap();
let dyn_img: DynamicImage = pixels.resize_exact(width, height, image::imageops::Triangle);
let bgr_img = dyn_img.to_bgr8();
// Get an array of the pixel values
let raw_u8_arr: &[u8] = &bgr_img.as_raw()[..];
// Create an array to hold the f32 value of those pixels
let bytes_required = raw_u8_arr.len() * 4;
let mut u8_f32_arr: Vec<u8> = vec![0; bytes_required];

for i in 0..raw_u8_arr.len() {
// Read the number as a f32 and break it into u8 bytes
let u8_f32: f32 = raw_u8_arr[i] as f32;
let u8_bytes = u8_f32.to_ne_bytes();

for j in 0..4 {
u8_f32_arr[(i * 4) + j] = u8_bytes[j];
}
}
return u8_f32_arr;
}

And use this helper function to convert the input image:

let tensor_data = image_to_tensor(image_name.to_string(), 224, 224);

Now we can start our inference with WASI-NN:

// load model
let graph = unsafe {
wasi_nn::load(
&[&xml.into_bytes(), &weights],
wasi_nn::GRAPH_ENCODING_OPENVINO,
wasi_nn::EXECUTION_TARGET_CPU,
)
.unwrap()
};
// initialize the computation context
let context = unsafe { wasi_nn::init_execution_context(graph).unwrap() };
// initialize the input tensor
let tensor = wasi_nn::Tensor {
dimensions: &[1, 3, 224, 224],
type_: wasi_nn::TENSOR_TYPE_F32,
data: &tensor_data,
};
// set_input
unsafe {
wasi_nn::set_input(context, 0, tensor).unwrap();
}
// Execute the inference.
unsafe {
wasi_nn::compute(context).unwrap();
}
// retrieve output
let mut output_buffer = vec![0f32; 1001];
unsafe {
wasi_nn::get_output(
context,
0,
&mut output_buffer[..] as *mut [f32] as *mut u8,
(output_buffer.len() * 4).try_into().unwrap(),
)
.unwrap();
}

Where the wasi_nn::GRAPH_ENCODING_OPENVINO means using the OpenVINO™ backend, and wasi_nn::EXECUTION_TARGET_CPU means running the computation on CPU.

Finally, we sort the output and then print the top-5 classification results:

let results = sort_results(&output_buffer);
for i in 0..5 {
println!(
" {}.) [{}]({:.4}){}",
i + 1,
results[i].0,
results[i].1,
imagenet_classes::IMAGENET_CLASSES[results[i].0]
);
}

More Examples

There is also an example that using OpenVINO to do road segmentation ADAS. Welcome to give it a try. You are also welcome to contribute your own examples.